Preview

Вопросы современной педиатрии

Расширенный поиск

Новые стратегии модификации состава детских молочных смесей

https://doi.org/10.15690/vsp.v21i6.2468

Аннотация

В статье обсуждаются проблемы моделирования защитных свойств грудного молока при создании детских молочных смесей. В первую очередь это касается условий формирования нормальной кишечной микробиоты растущего организма, поскольку количественные и качественные ее особенности являются триггером либо саногенетических, либо патологических иммунных и метаболических реакций, а также определяют функционирование оси «кишечник – головной мозг». Показаны протективная значимость разнообразия пребиотического состава молока млекопитающих и индуктивная роль олигосахаридов грудного молока. Представлена современная концепция участия синбиотиков в функционировании желудочно-кишечного тракта и других систем растущего организма, а также использования современных синбиотиков при создании детских молочных смесей, в том числе доступной отечественной смеси.

Об авторах

И. А. Беляева
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»; РНИМУ им. Н.И. Пирогова; Морозовская ДГКБ
Россия

Беляева Ирина Анатольевна, доктор медицинских наук, профессор Российской академии наук, заведующая отделом преконцепционной, антенатальной и неонатальной медицины; профессор кафедры факультетской педиатрии педиатрического факультета; врач-неонатолог.

тел.: +7 (499) 400-47-33

119333, Москва, ул. Фотиевой, д. 10, к. 1


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Е. П. Бомбардирова
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»
Россия

Москва


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Т. В. Турти
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»; РНИМУ им. Н.И. Пирогова; НИИ организации здравоохранения и медицинского менеджмента
Россия

Москва


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Список литературы

1. Vaz JS, Maia MFS, Neves PAR, et al. Monitoring breastfeeding indicators in high-income countries: Levels, trends and challenges. Matern Child Nutr. 2021;17(3):e13137. doi: https://doi.org/10.1111/mcn.13137

2. Neves PAR, Vaz JS, Maia FS, et al. Rates and time trends in the consumption of breastmilk, formula, and animal milk by children younger than 2 years from 2000 to 2019: analysis of 113 countries. Lancet Child Adolesc Health. 2021;5(9):619–630. doi: https://doi.org/10.1016/S2352-4642(21)00163-2

3. Almeida CC, Mendonca Pereira BF, Leandro KC, et al. Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. Int J Food Sci. 2021; 2021:8850080. doi: https://doi.org/10.1155/2021/8850080

4. Беляева И.А., Намазова-Баранова Л.С., Бомбардирова Е.П. и др. Таргетное формирование микробиоты младенцев на искусственном вскармливании: современные возможности // Вопросы современной педиатрии. — 2021. — Т. 20. — № 6. — С. 484–491. — doi: https://doi.org/10.15690/vsp.v20i6.2354

5. Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11(1):5206. doi: https://doi.org/10.1038/s41467-020-18871-1

6. Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018;26(7):563–574. doi: https://doi.org/10.1016/j.tim.2017.11.002

7. Kelsey CM, Prescott S, McCulloch JA, et al. Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. Brain Behav Immun. 2021;91: 472–486. doi: https://doi.org/10.1016/j.bbi.2020.11.003

8. Carlson AL, Xia K, Azcarate-Peril MA, et al. Infant Gut Microbiome Associated With Cognitive Development. Biol Psychiatry. 2018;83(2):148–159. doi: https://doi.org/10.1016/j.biopsych.2017.06.021

9. Indiani CMDSP, Rizzardi KF, Castelo PM, et al. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child Obes. 2018;14(8):501–509. doi: https://doi.org/10.1089/chi.2018.0040

10. Lyons KE, Ryan CA, Dempsey EM, et al. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients. 2020;12(4):1039. doi: https://doi.org/10.3390/nu12041039

11. Hermansson H, Kumar H, Collado MC, et al. Breast Milk Microbiota Is Shaped by Mode of Delivery and Intrapartum Antibiotic Exposure. Front Nutr. 2019;6:4. doi: https://doi.org/10.3389/fnut.2019.00004

12. Chen PW, Lin YL, Huang MS. Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J Food Drug Anal. 2018;26(4):1235–1244. doi: https://doi.org/10.1016/j.jfda.2018.03.004

13. Luk B, Veeraragavan S, Engevik M, et al. Postnatal colonization with human “infant-type” Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS ONE. 2018;13(5):e0196510. doi: https://doi.org/10.1371/journal.pone.0196510

14. Luczynski P, McVey Neufeld KA, Oriach CS, et al. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. Int J Neuropsychopharmacol. 2016;19(8):pyw020. doi: https://doi.org/10.1093/ijnp/pyw020

15. Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–1188. doi: https://doi.org/10.1016/j.neuroscience.2010.08.005

16. He X, Slupsky CM, Dekker JW, et al. Integrated Role of Bifidobacterium animalis subsp. lactis Supplementation in Gut Microbiota, Immunity, and Metabolism of Infant Rhesus Monkeys. mSystems. 2016;1(6):e00128-16. doi: https://doi.org/10.1128/mSystems.00128-16

17. Abelius MS, Ernerudh J, Berg G, et al. High cord blood levels of the T-helper 2-associated chemokines CCL17 and CCL22 precede allergy development during the first 6 years of life. Pediatr Res. 2011;70(5):495–500. doi: https://doi.org/10.1203/PDR.0b013e31822f2411

18. Sanders ME. Summary of probiotic activities of Bifidobacterium lactis HN019. J Clin Gastroenterol. 2006;40(9):776–783. doi: http://doi.org/10.1097/01.mcg.0000225576.73385.f0

19. Zhou JS, Shu Q, Rutherfurd KJ, et al. Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem Toxicol. 2000;38(2-3):153–161. doi: http://doi.org/10.1016/S0278-6915(99)00154-4

20. Neis EPJG, Dejong CHC, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7(4): 2930–2946. doi: http://doi.org/10.3390/nu7042930

21. Martin FP, Sprenger N, Yap IK, et al. Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res. 2009; 8(4):2090–2105. doi: http://doi.org/10.1021/pr801068x

22. Collado MC, Cernada M, Baüerl C, et al. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes. 2012;3(4):352–365. doi: https://doi.org/10.4161/gmic.21215

23. Marcobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;18 Suppl 4(0 4):12–15. doi: https://doi.org/10.1111/j.1469-0691.2012.03863.x

24. Carrothers JM, York MA, Brooker SL, et al. Fecal Microbial Community Structure Is Stable over Time and Related to Variation in Macronutrient and Micronutrient Intakes in Lactating Women. J Nutr. 2015;145(10):2379–2388. doi: https://doi.org/10.3945/jn.115.211110

25. Cheema AS, Trevenen ML, Turlach BA, et al. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci. 2022;23(5):2804. doi: https://doi.org/10.3390/ijms23052804

26. Asnicar F, Manara S, Zolfo M, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017;2(1):e00164-16. doi: https://doi.org/10.1128/mSystems.00164-16

27. Duranti S, Lugli GA, Mancabelli L, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5(1):66. doi: https://doi.org/10.1186/s40168-017-0282-6

28. Laursen MF, Sakanaka M, von Burg N, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol. 2021;6(11):1367–1382. doi: https://doi.org/10.1038/s41564-021-00970-4

29. Ehrlich AM, Pacheco AR, Henrick BM, et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 2020;20(1):357. doi: https://doi.org/10.1186/s12866-020-02023-y

30. Marcobal A, Barboza M, Froehlich JW, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58(9):5334–5340. doi: https://doi.org/10.1021/jf9044205

31. Zambruni M, Villalobos A, Somasunderam A, et al. Maternal and pregnancy-related factors affecting human milk cytokines among Peruvian mothers bearing low-birth-weight neonates. J Reprod Immunol. 2017;120:20–26. doi: https://doi.org/10.1016/j.jri.2017.04.001

32. Vass RA, Kemeny A, Dergez T, et al. Distribution of bioactive factors in human milk samples. Int Breastfeed J. 2019;14:9. doi: https://doi.org/10.1186/s13006-019-0203-3

33. Hennet T, Borsig L. Breastfed at Tiffany’s. Trends Biochem Sci. 2016;41(6):508–518. doi: https://doi.org/10.1016/j.tibs.2016.02.008

34. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front Immunol. 2018;9:361. doi: https://doi.org/10.3389/fimmu.2018.00361

35. Davis EC, Wang M, Donovan SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes. 2017;8(2):143–171. doi: https://doi.org/10.1080/19490976.2016.1278104

36. Thurl S, Munzert M, Boehm G, et al. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017; 75(11):920–933. doi: https://doi.org/10.1093/nutrit/nux044

37. Quinn EM, Joshi L, Hickey RM. Symposium review: Dairy-derived oligosaccharides-Their influence on host-microbe interactions in the gastrointestinal tract of infants. J Dairy Sci. 2020;103(4): 3816–3827. doi: https://doi.org/10.3168/jds.2019-17645

38. Coppa GV, Gabrielli O, Zampini L, et al. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr. 2011;53(1):80–87. doi: https://doi.org/10.1097/MPG.0b013e3182073103

39. Goehring KC, Kennedy AD, Prieto PA, et al. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One. 2014;9:e101692 doi: https://doi.org/10.1371/journal.pone.0101692

40. Soyyılmaz B, Mikš MH, Röhrig CH, et al. The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations throughout Lactation. Nutrients. 2021;13(8):2737. doi: https://doi.org/10.3390/nu13082737

41. Wiciński M, Sawicka E, Gębalski J, et al. Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology. Nutrients. 2020;12(1):266. doi: https://doi.org/10.3390/nu12010266

42. Lin AE, Autran CA, Szyszka A, et al. Human milk oligosaccharides inhibit growth of group B. Streptococcus. J Biol Chem. 2017;292(27):11243–11249. doi: https://doi.org/10.1074/jbc.M117.789974

43. Donovan SM, Comstock SS. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann Nutr Metab. 2016;69(Suppl 2):42–51. doi: https://doi.org/10.1159/000452818

44. Steenhout P, Sperisen P, Martin FP, et al. Term infant formula supplemented with human milk oligosaccharides (2' fucosyllactose and lacto-N-neotetraose) shifts stool microbiota and metabolic signatures closer to that of breastfed infants. J Pediatr Gastroenterol Nutr. 2016;63(Suppl 1):S55.

45. Chichlowski M, German JB, Lebrilla CB, Mills DA. The Influence of Milk Oligosaccharides on Microbiota of Infants: Opportunities for Formulas. Annu Rev Food Sci Technol. 2001;2:331–351. doi: https://doi.org/10.1146/annurev-food-022510-133743

46. Vandenplas Y, Żołnowska M, Berni Canani R, et al. Effects of an Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides on Growth, Tolerability, Safety and Infection Risk in Infants with Cow’s Milk Protein Allergy: A Randomized, Multi-Center Trial. Nutrients. 2022;14(3):530. doi: https://doi.org/10.3390/nu14030530

47. GRAS Exemption Claim for 2'-O-Fucosyllactose (2'-FL). GRAS Notice (GRN) No. 650. In: U.S. Food & Drug Administration. Available online: https://www.fda.gov/media/99125/download. Accessed on December 06, 2022.

48. GRAS Exemption Claim for Lacto-N-neotetraose(LNnT). GRAS Notice (GRN) No. 659. In: U.S. Food & Drug Administration. Available online: https://www.fda.gov/media/100020/download. Accessed on December 06, 2022.

49. Salminen S, Stahl B, Vinderola G, Szajewska H. Infant Formula Supplemented with Biotics: Current Knowledge and Future Perspectives. Nutrients. 2020;12(7):1952. doi: https://doi.org/10.3390/nu12071952

50. Hill C, Guarner F, Reid G, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. doi: https://doi.org/10.1038/nrgastro.2014.66

51. Swanson KS, Gibson GR, Hutkins R, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020;17(11):687–701. doi: https://doi.org/10.1038/s41575-020-0344-2

52. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–1412. doi: https://doi.org/10.1093/jn/125.6.1401

53. Srivastava A, Mishra S. Enrichment and evaluation of galactooligosaccharides produced by whole cell treatment of sugar reaction mixture. Mol Biol Rep. 2019;46(1):1181–1188. doi: https://doi.org/10.1007/s11033-019-04585-1

54. Porras-Dominguez JR, Rodríguez-Alegría ME, Miranda A, et al. Frucooligosaccharides purification: complexing simple sugars with phenylboronic acid. Food Chem. 2019;285:204–212. doi: https://doi.org/10.1016/j.foodchem.2019.01.130

55. Childs CE. Röytiö H, Alhoniemi E, et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr. 2014;111: 1945–1956. doi: https://doi.org/10.1017/S0007114513004261

56. Favretto DC, Pontin B, Moreira TR. Effect of the consumption of a cheese enriched with probiotic organisms (Bifidobacterium lactis Bi-07) in improving symptoms of constipation. Arq Gastroenterol. 2013;50(3):196–201. doi: https://doi.org/10.1590/S0004-28032013000200035

57. Krumbeck JA, Rasmussen HE, Hutkins RW, et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome. 2018;6(1):121. doi: https://doi.org/10.1186/s40168-018-0494-4

58. Украинцев С.Е., Парамонова Н.С., Малёванная И.А. Грудное молоко: возможные механизмы формирования поведения и когнитивных функций ребенка // Вопросы современной педиатрии. — 2018. — Т. 17. — № 5. — С. 394–398. — doi: https://doi.org/10.15690/vsp.v17i5.1956

59. Vandenplas Y, Analitis A, Tziouvara C, et al. Safety of a New Synbiotic Starter Formula. Pediatr Gastroenterol Hepatol Nutr. 2017;20(3): 167–177. doi: https://doi.org/10.5223/pghn.2017.20.3.167

60. Bocquet A, Lachambre E, Kempf C, Beck L. Effect of infant and follow-on formulas containing B lactis and galacto- and fructooligosaccharides on infection in healthy term infants. J Pediatr Gastroenterol Nutr. 2013;57(2):180–187. doi: https://doi.org/10.1097/MPG.0b013e318297f35e

61. Braegger C, Chmielewska A, Decsi T, et al. Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2011;52(2):238–250. doi: https://doi.org/10.1097/MPG.0b013e3181fb9e80

62. Holscher HD, Czerkies LA, Cekola P, et al. Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: a randomized, double-blind, controlled trial. JPEN J Parenter Enteral Nutr. 2012;36(1 Suppl):106S–117S. doi: https://doi.org/10.1177/0148607111430817

63. Vandenplas Y, Abkari A, Bellaiche M, et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. J Pediatr Gastroenterol Nutr. 2015;61(5):531–537. doi: https://doi.org/10.1097/MPG.0000000000000949


Рецензия

Для цитирования:


Беляева И.А., Бомбардирова Е.П., Турти Т.В. Новые стратегии модификации состава детских молочных смесей. Вопросы современной педиатрии. 2022;21(6):447-453. https://doi.org/10.15690/vsp.v21i6.2468

For citation:


Belyaeva I.A., Bombardirova E.P., Turti T.V. New Strategies for Enhancement of Infant Milk Formulas Composition. Current Pediatrics. 2022;21(6):447-453. (In Russ.) https://doi.org/10.15690/vsp.v21i6.2468

Просмотров: 413


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)