Mitochondrial Fatty Acid Beta-Oxidation Disorders in Children: Literature Review
https://doi.org/10.15690/vsp.v21i6S.2503
Abstract
Congenital mitochondrial fatty acid beta-oxidation disorders are a heterogeneous group of metabolic disorders characterized by impaired fatty acid metabolism in mitochondria. It results in central nervous system, skeletal muscle, cardiovascular system, and liver damage, as well as the development of nonketotic hypoglycemia. The age of disease manifestation and its severity range from severe (neonatal) to milder myopathic (adult) forms. The extension of the mass screening program in Russian Federation allows to detect these diseases during the first weeks of life. The availability of effective therapy for mitochondrial fatty acid beta-oxidation disorders, especially during early diagnosis, enables timely stabilization of the patient's condition and prevention of severe complications. Awareness of pediatricians, neonatologists, neurologists, and cardiologists about such diseases is the urgent task of modern pediatrics.
Keywords
About the Authors
Natalia V. ZhurkovaRussian Federation
Moscow
Disclosure of interest:
Lecturing for pharmaceutical companies Takeda, Sanofi, Biomarin, Nanolek, Nutricia.
Nato V. Vashakmadze
Russian Federation
Moscow
Disclosure of interest:
Lecturing for pharmaceutical companies Takeda, Sanofi, Biomarin, Nanolek, Chiesi.
Andrey N. Surkov
Russian Federation
Moscow
Disclosure of interest:
Lecturing for pharmaceutical companies PTC Therapeutics, ООО Swixx BioPharma, Valenta Pharmaceuticals, OTCPharm.
Olga Ya. Smirnova
Russian Federation
Moscow
Disclosure of interest:
Author confirmed the absence of a reportable conflict of interests.
Natalia S. Sergienko
Russian Federation
Moscow
Disclosure of interest:
Author confirmed the absence of a reportable conflict of interests.
Natallia G. Ovsyanik
Russian Federation
Moscow
Disclosure of interest:
Author confirmed the absence of a reportable conflict of interests.
Lilia R. Selimzyanova
Russian Federation
Moscow
Disclosure of interest:
Lecturing for pharmaceutical companies AstraZeneca, Bionorica.
References
1. Goetzman ES. Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders. Curr Genet Med Rep. 2017;5(3):132–142. doi: https://doi.org/10.1007/s40142-017-0125-6
2. Vishwanath VA. Fatty Acid Beta-Oxidation Disorders: A Brief Review. Ann Neurosci. 2016;23(1):51–55. doi: https://doi.org/10.1159/000443556
3. Merritt JL 2nd, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018;6(24):473. doi: https://doi.org/10.21037/atm.2018.10.57
4. Ambrose A, Sheehan M, Bahl S, et al. Outcomes of mitochondrial long chain fatty acid oxidation and carnitine defects from a single center metabolic genetics clinic. Orphanet J Rare Dis. 2022;17(1):360. doi: https://doi.org/10.1186/s13023-022-02512-5
5. Kennedy S, Potter BK, Wilson K, et al. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD) by newborn screening Ontario. BMC Pediatr. 2010;10:82. doi: https://doi.org/10.1186/1471-2431-10-82
6. Houten SM, Violante S, Ventura FV, Wanders RJA. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23–44. doi: https://doi.org/10.1146/annurev-physiol-021115-105045
7. Gharbawy E, Vockley A. Inborn Errors of Metabolism with Myopathy: Defects of Fatty Acid Oxidation and the Carnitine Shuttle System. Pediatr Clin North Am. 2018;65(2):317–335. doi: https://doi.org/10.1016/j.pcl.2017.11.006
8. Knottnerus SJG, Bleeker JC, Wüst RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018;19(1):93–106. doi: https://doi.org/10.1007/s11154-018-9448-1
9. Smith E, Fernandez C, Melander O, Ottosson F. Altered Acylcarnitine Metabolism Is Associated With an Increased Risk of Atrial Fibrillation. J Am Heart Assoc. 2020;9(21):e016737. doi: https://doi.org/10.1161/JAHA.120.016737
10. Wanders RJA, Visser G, Ferdinandusse S, et al. Mitochondrial Fatty Acid Oxidation Disorders: Laboratory Diagnosis, Pathogenesis, and the Complicated Route to Treatment. J Lipid Atheroscl. 2020;9(3):313–333. doi: https://doi.org/10.12997/jla.2020.9.3.313
11. Mütze U, Nennstiel U, Odenwald B, et al. Sudden neonatal death in individuals with medium-chain acyl-coenzyme A dehydrogenase deficiency: limit of newborn screening. Eur J Pediatr. 2022;181(6):2415–2422. doi: https://doi.org/10.1007/s00431022-04421-y
12. De Pasquale L, Meo P, Fulia F, et al. A fatal case of neonatal onset multiple acyl-CoA dehydrogenase deficiency caused by novel mutation of ETFDH gene: case report. Ital J Pediatr. 2022;48(1):164. doi: https://doi.org/10.1186/s13052-022-01356-w
13. Gjorgjievski N, Dzekova-Vidimliski P, Petronijevic Z, et al. Carnitine Palmitoyltransferase II Deficiency (CPT II) Followed By Rhabdomyolysis and Acute Kidney Injury. Open Access Maced J Med Sci. 2018;6(4):666–668. doi: https://doi.org/10.3889/oamjms.2018.158
14. Ramanathan R, Ibdah JA. Mitochondrial Dysfunction and Acute Fatty Liver of Pregnancy. Int J Mol Sci. 2022;23(7):3595. doi: https://doi.org/10.3390/ijms23073595
15. Ivin N, Della Torre V, Sanders F, Youngman M. Rhabdomyolysis caused by carnitine palmitoyltransferase 2 deficiency: A case report and systematic review of the literature. Intensive Care Soc. 2020;21(2):165–173. doi: https://doi.org/10.1177/1751143719889766
16. El-Gharbawy A, Vockley J. Inborn Errors of Metabolism with Myopathy: Defects of Fatty Acid Oxidation and the Carnitine Shuttle System. Pediatr Clin North Am. 2018;65(2):317–335. doi: https://doi.org/10.1016/j.pcl.2017.11.006
17. Lund AM, Skovby F, Vestergaard H, et al. Clinical and biochemical monitoring of patients with fatty acid oxidation disorders. J Inherit Metab Dis. 2010;33(5):495–500. doi: https://doi.org/10.1007/s10545-009-9000-2
18. Narusheniya mitokhondrial’nogo β-okisleniya zhirnykh kislot: Clinical guidelines. Ministry of Health of Russian Federation; 2021. (In Russ).] Доступно по: https://www.pediatr-russia.ru/information/klin-rek/proekty-klinicheskikh-rekomendatsiy/КР%20НОЖК_финал_pdf. Ссылка активна на 25.12.2022.
19. Bosch AM, Abeling NG, Ijlst L, et al. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis. 2011;34(1):159–164. doi: https://doi.org/10.1007/s10545-010-9242-z
20. Nutrition Management of Inherited Metabolic Diseases. Bernstein LE, Rohr F, Helm JR, eds. Springer; 2015. doi: https://doi.org/10.1007/978-3-319-14621
21. Aldubayan SH, Rodan LH, Berry GT, Levy HL. Acute Illness Protocol for Fatty Acid Oxidation and Carnitine Disorders. Pediatr Emerg Care. 2017;33(4):296–301. doi: http://doi.org/10.1097/PEC.0000000000001093
22. Kulebina EA, Surkov AN, Potapov AS, et al. Diagnosis and treatment of the long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) in a 8 months old infant. Rossiyskiy Pediatricheskiy Zhurnal = Russian Pediatric Journal. 2020;23(4):274–279. (In Russ). doi: http://doi.org/10.18821/1560-9561-2020-23-4-274-279
23. Order of the Ministry of Health of the Russian Federation № 274н dated April 21, 2022 “Ob utverzhdenii poryadka okazaniya meditsinskoi pomoshchi patsientam s vrozhdennymi i/ili nasledstvennymi zabolevaniyami”. (In Russ). Доступно по: https://rg.ru/documents/2022/07/14/minzdrav-prikaz274-site-dok.html. Ссылка активна на 25.12.2022.
Review
For citations:
Zhurkova N.V., Vashakmadze N.V., Surkov A.N., Smirnova O.Ya., Sergienko N.S., Ovsyanik N.G., Selimzyanova L.R. Mitochondrial Fatty Acid Beta-Oxidation Disorders in Children: Literature Review. Current Pediatrics. 2022;21(6S):522-528. (In Russ.) https://doi.org/10.15690/vsp.v21i6S.2503