Preview

Вопросы современной педиатрии

Расширенный поиск

Роль нарушений барьерной функции кишечника в развитии пищевой аллергии у детей

https://doi.org/10.15690/vsp.v12i2.615

Полный текст:

Аннотация

Кишечный эпителиальный барьер играет важнейшую роль в поддержании кишечного гомеостаза, препятствует проникновению бактерий и пищевых аллергенов из просвета кишечника. Рассматриваются нарушения функции эпителиального барьера, способствующие развитию сенсибилизации. Особое внимание уделяется молекулярным механизмам, обеспечивающим увеличение трансцитоплазменного переноса аллергенов. Фаза сенсибилизации при аллергии характеризуется антиген-индуцированным перекрестным связыванием IgE с высокоаффинным FcRI-рецептором на поверхности тучных клеток, что приводит к анафилактической реакции.

Об авторах

Т. Э. Боровик
Научный центр здоровья детей РАМН, Москва; Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия


С. Г. Макарова
Научный центр здоровья детей РАМН, Москва; Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия


Г. В. Яцык
Научный центр здоровья детей РАМН, Москва
Россия


Т. Н. Степанова
Научный центр здоровья детей РАМН, Москва
Россия


С. Г. Грибакин
Российская медицинская академия последипломного образования, Москва
Россия


Список литературы

1. Herz U. Immunological basis and management of food allergy. J. Pediatr. Gastroenterol. Nutr. 2008; 47 (Suppl. 2): 54–57.

2. Husby S. Food allergy as seen by a paediatric gastroenterologist. J. Pediatr. Gastroenterol. Nutr. 2008; 47 (Suppl. 2): 49–52.

3. Campbell D. E., Hill D. J., A. Kemp A. S. Enhanced IL-4 but normal interferon-gamma production in children with isolated IgE mediated food hypersensitivity. Pediatric Allergy Immunol. 1998; 9 (2): 68–72.

4. Li H., Nowak-Wegrzyn A., Charlop-Powers Z. et al. Transcytosis of IgE-antigen complexes by CD23a in human intestinal epithelial cells and its role in food allergy. Gastroenterology. 2006; 131 (1): 47–58.

5. Negrao-Correa D., Adams L. S., and Bell R. G. Intestinal transport and catabolism of IgE: a major blood-independent pathway of IgE dissemination during a Trichinella spiralis infection of rats. J. Immunol. 1996; 157 (9): 4037–4044.

6. Yu L. C. H. and Perdue M. H. Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol. Rev. 2001; 179: 61–73.

7. Yu L. C. H. and Perdue M. H. Immunologically mediated transport of ions and macromolecules. Ann. New York Acad. Sci. 2000; 915: 247–259.

8. Ley R. E., Peterson D. A., Gordon J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124 (4): 837–848.

9. O'Hara A. M. and Shanahan F. The gut flora as a forgotten organ. EMBO Reports. 2006; 7 (7): 688–693.

10. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444 (7122): 1022–1023.

11. Makarova S. G. The role of intestinal microbiocenosis in formation of oral tolerance in children. Rossiiskii Allergologicheskii Zhurnal — Russian allergological journal. 2008; 2:32–46.

12. Makarova S. T., Borovik T. E., Balabolkin I. I., Katosova L. K., Lukoyanova O. L., Semenova N. N., Stepanova T. V. Modern point of view at the role of intestinal biocenosis in children with food allergy and approaches to its correction. Rossiiskii Allergologicheskii Zhurnal — Russian allergological journal. 2012; 5: 36–45.

13. Kelly D., King T., Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mut. Res. 2007; 622 (1–2): 58–69.

14. Tanaka K., Ishikawa H. Role of intestinal bacterial flora in oral tolerance induction. Histol. Histopathol. 2004; 19 (3): 907–914.

15. Oyama N., Sudo N., Sogawa H., Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 2001; 107 (1): 153–159.

16. Sudo N., Yu X. N., Aiba Y. et al. An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice. Clin. Exp. Allergy. 2001; 32 (7): 1112–1116.

17. Dreskin S. C., Ayars A., Jin Y., Atkins D., Leo H. L., Song B. Association of genetic variants of CD14 with peanut allergy and elevated IgE levels in peanut allergic individuals. Ann. Allergy Asthma Immunol. 2011; 116: 170–172.

18. Galli E., Ciucci A., Cersosimo S. et al. Eczema and food allergy in an Italian pediatric cohort: no association with TLR-2 and TLR-4 polymorphisms. Int. J. Immunopathol. Pharmacol. 2010; 23 (2): 671–675.

19. Prescott S. L., Noakes P., Chow B. W. Y. et al. Presymptomatic differences in Toll-like receptor function in infants who have allergy. J. Allergy Clin. Immunol. 2008; 122 (2): 391–399.

20. Bashir M. E. H., Louie S., Shi H. N., Nagler-Anderson C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibILity to food allergy. J. Immunol. 2004; 172 (11): 6978–6987.

21. Cario E., Podolsky D. K. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infection and Immunity. 2000; 68 (12): 7010–7017.

22. Faria A. M. C. and Weiner H. L. Oral tolerance. Immunol. Rev. 2005; 206: 232–259. 23. Rescigno M. and Di S. A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 2009; 119 (9): 2441–2450.

23. Atarashi K., Nishimura J., Shima T. et al. ATP drives lamina propria TH17 cell differentiation. Nature. 2008; 455 (7214): 808–812.

24. Sun C. M., Hall J. A., Blank R. B. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007; 204 (8): 1775–1785.

25. Iliev I. D., Spadoni I., Mileti E. et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009; 58 (11): 1481–1489.

26. Boirivant M., Amendola A., Butera A. et al. A transient breach in the epithelial barrier leads to regulatory T-cell generation and resistance to experimental colitis. Gastroenterology. 2008; 135 (5): 1612–1623.

27. Adel-Patient K., Bernard H., Ah-Leung S., Creminon C., Wal J. M. Peanut- and cow's milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy. 2005; 60 (5): 658–664.

28. Gagliardi M. C., Sallusto F., Marinaro M., Vendetti S., Riccomi A., De M. T. Effects of the adjuvant cholera toxin on dendritic cells: stimulatory and inhibitory signals that result in the amplification of immune responses. Int. J. Med. Microbiol. 2001; 291 (6–7): 571–575.

29. Blazquez A. B. and Berin M. C. Gastrointestinal dendritic cells promote Th2 skewing via OX40L. J. Immunol. 2008; 180 (7): 4441–4450.

30. Smit J. J., Bol-Schoenmakers M., Hassing I. et al. The role of intestinal dendritic cells subsets in the establishment of food allergy. Clin. Exp. Allergy. 2011; 41 (6): 890–898.

31. Feng B. S., Chen X., He S. H. et al. Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model. J. Allergy Clin. Immunol. 2008; 122 (1): 55–61.

32. Meyers J. H., Chakravarti S., Schlesinger D. et al. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat. Immunol. 2005; 6 (5): 455–464.

33. Yang P. C., Xing Z., Berin C. M. et al. TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy. Gastroenterology. 2007; 133 (5): 1522–1533.

34. Yen T. H. and Wright N. A. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2006; 2 (3): 203–212.

35. Ivanov A. I., Parkos C. A., and Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am. J. Pathol. 2010; 177 (2): 512–524.

36. Wu C. C., Lu Y. Z., Wu L. L., Yu L. C. Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction. BMC Gastroenterol. 2010; 10: 39.

37. Gonzalez-Mariscal L., Tapia R., Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochimica et Biophysica Acta. 2008; 1778 (3): 729–756.

38. Tomson F. L., Koutsouris A., Viswanathan V. K., Turner J. R., Savkovic S. D., Hecht G. Differing roles of protein kinase C-zeta in disruption of tight junction barrier by enteropathogenic and enterohemorrhagic Escherichia coli. Gastroenterology. 2004; 127 (3): 859–869.

39. Suzuki T., Elias B. C., Seth A. et al. PKCzeta regulates occludin phosphorylation and epithelial tight junction integrity. Proceed. Nat. Acad. Sci. USA. 2009; 106 (1): 61–66.

40. Wu L. L., Chiu H. D., Peng W. H. et al. Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rhoassociated kinase and protein kinase C zeta. Crit. Care Med. 2011; 39: 2087–2098.

41. Le'Negrate G., Ricci V., Hofman V., Mograbi B., Hofman P., Rossi B. Epithelial intestinal cell apoptosis induced by Helicobacter pylori depends on expression of the cag pathogenicity island phenotype. Inf. Immunity. 2001; 69 (8): 5001–5009.

42. Yu L. C. H., Turner J. R., Buret A. G. LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp. Cell Res. 2006; 312 (17): 3276–3286.

43. Flynn A. N. and Buret A. G. Tight junctional disruption and apoptosis in an in vitro model of Citrobacter rodentium infection. Microb. Pathogenesis. 2008; 45 (2): 98–104.

44. Scott K. G. E., Meddings J. B., Kirk D. R., Lees-Miller S. P., Buret A. G. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology. 2002; 123 (4): 1179–1190.

45. Bojarski C., Weiske J., Schoneberg T. et al. The specific fates of tight junction proteins in apoptopic epithelial cells. J. Cell Sci. 2004; 117 (10): 2097–2107.

46. Yu L. C. Protective mechanism against gut barrier dysfunction in mesenteric ischemia/reperfusion. Adaptive Medicine. 2010; 2 (1): 11–22.

47. Heyman M., Ducroc R., Desjeux J. F., Morgat J. L. Horseradish peroxidase transport across adult rabbit jejunum in vitro. Am. J. Physiol. 1982; 242 (6): 558–564.

48. Troncone R., Caputo N., Florio G., Finelli E. Increased intestinal sugar permeability after challenge in children with cow's milk allergy or intolerance. Allergy. 1994; 49 (3): 142–146.

49. Pizzuti D., Senzolo M., Buda A. et al. In vitro model for IgE mediated food allergy. Scandinavian J. Gastroenterol. 2011; 46 (2): 177–187.

50. Di Leo V., Yang P. C., Berin M. C., Perdue M. H. Factors regulating the effect of IL-4 on intestinal epithelial barrier function. Int. Arch. Allergy Immunol. 2002; 129 (3): 219–227.

51. Wisner D. M., Harris III L. R., Green C. L., Poritz L. S. Opposing regulation of the tight junction protein claudin-2 by interferongamma and interleukin-4. J. Surg. Res. 2008; 144 (1): 1–7.

52. Heller F., Fromm A., Gitter A. H., Mankertz J., Schulzke J. D. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of proinflammatory interleukin-13 on epithelial cell function. Mucosal Immunol. 2008; 1: 58–61.

53. Jacob C., Yang P. C., Darmoul D. et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J. Biol. Chem. 2005; 280 (36): 31936–31948.

54. Yang P. C., Jury J., Soderholm J. D., Sherman P. M., McKay D. M., Perdue M. H. Chronic psychological stress in rats induces intestinal sensitization to luminal antigens. Am. J. Pathol. 2006; 168 (1): 104–114.

55. Wallon C., Yang P. C., Keita A. V. et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut. 2008; 57 (1): 50–58.

56. van den Wijngaard R. M., Klooker T. K., Welting O. et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterology & Motility. 2009; 21 (10): 1107–1194.

57. Forbes E. E., Groschwitz K., Abonia J. P. et al. IL-9-nd mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 2008; 205 (4): 897–913.

58. Chen J. C., J. Chuang G., Su Y. Y., Chiang B. L., Lin Y. S., Chow L. P. The protease allergen Pen c 13 induce allergic airway inflammation and changes in epithelial barrier integrity and function in a murine model. J. Biol. Chem. 2011; 286: 26667–26679.

59. Roth-Walter F., Berin M. C., Arnaboldi P. et al. Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer's patches. Allergy. 2008; 63 (7): 882–890.

60. Yang P. C., Berin M. C., Yu L. C. H., Conrad D. H., Perdue M. H. Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (FcRII). J. Clin. Invest. 2000; 106 (7): 879–886.

61. BevILacqua C., Montagnac G., Benmerah A. et al. Food allergens are protected from degradation during CD23-mediated transepithelial transport. Int. Arch. Allergy Immunol. 2004; 135 (2): 108–116.

62. Zhang M., Murphy R. F., Agrawal D. K. Decoding IgE Fc receptors. Immunol. Res. 2007; 37 (1): 1–16.

63. Montagnac G., Yu L. C. H., Bevilacqua C. et al. Differential role for CD23 splice forms in apical to basolateral transcytosis of IgE/allergen complexes. Traffic. 2005; 6 (3): 230–242.

64. Tu Y., Salim S., Bourgeois J. et al. CD23-mediated IgE transport across human intestinal epithelium: inhibition by blocking sites of translation or binding. Gastroenterology. 2005; 129 (3): 928–940.

65. Skripak J. M. and Sampson H. A. Towards a cure for food allergy. Curr. Opin. Immunol. 2008; 20 (6): 690–696.

66. Pochard P., Vickery B., Berin M. C. et al. Targeting Toll-like receptors on dendritic cells modifies the Th2 response to peanut allergens in vitro. J. Allergy Clin. Immunol. 2010; 126 (1): 92–97.

67. Zhao C. Q., Li T. L., He S. H. et al. Specific immunotherapy suppresses Th2 responses via modulating TIM1/TIM4 interaction on dendritic cells. Allergy. 2010; 65 (8): 986–995.

68. Rosenwasser L. J., Meng J. Anti-CD23. Clin. Rev. Allergy Immunol. 2005; 29: 61–72.


Для цитирования:


Боровик Т.Э., Макарова С.Г., Яцык Г.В., Степанова Т.Н., Грибакин С.Г. Роль нарушений барьерной функции кишечника в развитии пищевой аллергии у детей. Вопросы современной педиатрии. 2013;12(2):12-19. https://doi.org/10.15690/vsp.v12i2.615

For citation:


Borovik T.E., Makarova S.G., Yatsyk G.V., Stepanova T.N., Gribakin S.G. Role of the Barrier Dysfunction of the Intestines in the Development of Alimentary Allergy in Children. Current Pediatrics. 2013;12(2):12-19. (In Russ.) https://doi.org/10.15690/vsp.v12i2.615

Просмотров: 351


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)