МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ НАРУШЕНИЯ РАЗВИТИЯ МОЗГА В ПРЕ- И НЕОНАТАЛЬНОМ ПЕРИОДЕ
https://doi.org/10.15690/vsp.v11i6.487
Аннотация
Обзор литературы посвящен анализу современных представлений о молекулярных механизмах развития головного мозга в пре- и раннем постнатальном периоде, нарушение которых приводит к изменению нейропластичности и сложных форм поведения. Особый акцент сделан на роли окситоцина, механизмах нейрогенеза в регуляции развития мозга в норме, при стрессе раннего периода жизни и при пренатальном стрессе. Обсуждаются подходы к поиску молекул-маркеров и молекул-мишеней для диагностики и фармакологической коррекции нарушений развития головного мозга.
Об авторах
А. Б. СалминаРоссия
Салмина Алла Борисовна, доктор медицинских наук, профессор, заведующая кафедрой биохимии с курсами медицинской, фармацевтической и токсикологической химии, проректор по инновационному развитию и международной деятельности
Ю. К. Комлева
Россия
Н. В. Кувачева
Россия
О. Л. Лопатина
Россия
А. И. Инжутова
Россия
С. М. Черепанов
Россия
Н. А. Яузина
Россия
Г. А. Морозова
Россия
Н. А. Малиновская
Россия
Е. А. Пожиленкова
Россия
А. В. Моргун
Россия
Т. Е. Таранушенко
Россия
М. М. Петрова
Россия
Список литературы
1. Oreland S., Gustafsson-Ericson L., Nylander I. Short- and longterm consequences of different early environmental conditions on central immunoreactive oxytocin and arginine vasopressin levels in male rats. Neuropeptides. 2010; 44 (5): 391–398.
2. Cioni G., D'Acunto G., Guzzetta A. Perinatal brain damage in children: neuroplasticity, early intervention, and molecular mechanisms of recovery. Prog. Brain Res. 2011; 189: 139–154.
3. Robinson G. E., Fernald R. D., Clayton D. F. Genes and Social Behavior. Science. 2008; 322 (5903): 896–900.
4. Nylander I., Roman E. Neuropeptides as mediators of the earlylife impact on the brain; implications for alcohol use disorders. Front. Mol. Neurosci. 2012; 5: 77.
5. Cohen H., Kaplan Z., Kozlovsky N. et al. Hippocampal microinfusion of oxytocin attenuates the behavioural response to stress by means of dynamic interplay with the glucocorticoid-catecholamine responses. J. Neuroendocrinol. 2010; 22 (8): 889–904.
6. McCall C., Singer T. The animal and human neuroendocrinology of social cognition, motivation and behavior. Nat. Neurosci. 2012; 15 (5): 681–618.
7. Hurlemann R., Patin A., Onur O. A. et al. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J. Neurosci. 2010; 30 (14): 4999–5007.
8. Ferguson J. N., Aldag J. M., Insel T. R., Young L. J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 2001; 21 (20): 8278–8285.
9. Ebner K., Bosch O. J., Kromer S. A. et al. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology. 2005; 30 (2): 223–230.
10. Ebstein R. P., Israel S., Lerer E. et al. Arginine vasopressin and oxytocin modulate human social behavior. Ann. N.-Y Acad. Sci. 2009; 1167: 87–102.
11. Higashida H., Lopatina O., Yoshihara T. et al. Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice. J. Neuroendocrinol. 2010; 22 (5): 373–379.
12. Campbell A. Oxytocin and human social behavior. Pers. Soc. Psychol. Rev. 2010; 14 (3): 281–295.
13. Higashida H., Yokoyama S., Kikuchi M., Munesue T. CD38 and its role in oxytocin secretion and social behavior. Horm. Behav. 2012; 61 (3): 351–358.
14. Salmina A. B., Lopatina O., Ekimova M. V. et al. CD38/cyclic ADPribose system: a new player for oxytocin secretion and regulation of social behavior. J. Neuroendocrinol. 2010; 22 (5): 380–392.
15. Lopatina O., Inzhutova A., Pichugina Y. A. et al. Reproductive experience affects parental retrieval behaviour associated with increased plasma oxytocin levels in wild-type and CD38-knockout mice. J. Neuroendocrinol. 2011; 23 (11): 1125–1133.
16. Bosch O. J., Meddle S. L., Beiderbeck D. I. et al. Brain oxytocin correlates with maternal aggression: link to anxiety. J. Neurosci. 2005; 25 (29): 6807–6815.
17. Shughrue P. J., Dellovade T. L., Merchenthaler I. Estrogen modulates oxytocin gene expression in regions of the rat supraoptic and paraventricular nuclei that contain estrogen receptor-beta. Prog. Brain Res. 2002; 139: 15–29.
18. Cushing B. S., Levine K., Cushing N. L. Neonatal manipulation of oxytocin influences female reproductive behavior and success. Horm. Behav. 2005; 47 (1): 22–28.
19. Kramer K. M., Choe C., Carter C. S., Cushing B. S. Developmental effects of oxytocin on neural activation and neuropeptide release in response to social stimuli. Horm. Behav. 2006; 49 (2): 206–214.
20. Douglas A. J. Baby love? Oxytocin-dopamine interactions in mother-infant bonding. Endocrinology. 2010; 151 (5): 1978–1980.
21. Bales K. L., Plotsky P. M., Young L. J. et al. Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors. Neuroscience. 2007; 144 (1): 38–45.
22. Carter C. S., Boone E. M., Pournajafi-Nazarloo H., Bales K. L. Consequences of early experiences and exposure to oxytocin and vasopressin are sexually dimorphic. Dev. Neurosci. 2009; 31 (4): 332–341.
23. Khazipov R., Tyzio R., Ben-Ari Y. Effects of oxytocin on GABA signalling in the foetal brain during delivery. Prog. Brain Res. 2008; 170: 243–257.
24. Bales K. L., Boone E., Epperson P. et al. Are behavioral effects of early experience mediated by oxytocin? Front Psychiatry. 2011; 2: 24.
25. Leuner B., Caponiti J. M., Gould E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus. 2012; 22 (4): 861–868.
26. Dupret D., Revest J. M., Koehl M. et al. Spatial relational memory requires hippocampal adult neurogenesis. PLoS One. 2008; 3 (4): 1959.
27. Germain N., Banda E., Grabel L. Embryonic stem cell neurogenesis and neural specification. J. Cell Biochem. 2010; 111 (3): 535–542.
28. Schaeffer E. L., Kuhn F., Schmitt A., Gattaz W. F., Gruber O., Schneider-Axmann T., Falkai P., Schmitt A. Increased cell proliferation in the rat anterior cingulate cortex following neonatal hypoxia: relevance to schizophrenia. J. Neur. Transm. 2012; [Epub ahead of print].
29. Lee M. M., Reif A., Schmitt A. G. Major depression: a role for hippocampal neurogenesis? Curr. Top Behav. Neurosci. 2012; [Epub ahead of print].
30. Evans J., Sun Y., McGregor A., Connor B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology. 2012; [Epub ahead of print].
31. Forrest C. M., Khalil O. S., Pisar M. et al. Prenatal activation of Toll-like receptors-3 by administration of the viral mimetic poly (I: C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Mol. Brain. 2012; 5 (1): 22.
32. Bilbo S. D., Schwarz J. M. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front. Behav. Neurosci. 2009; 3: 1–12.
33. Mak G. K., Weiss S. Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nat. Neurosci. 2010; 13 (6): 753–758.
34. Levy F., Gheusi G., Keller M. Plasticity of the parental brain: a case for neurogenesis. J. Neuroendocrinol. 2011; 23 (11): 984–993.
35. van Praag H., Kempermann G., Gage F. H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 2000; 1 (3): 191–198.
36. Johansson B. B., Belichenko P. V. Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain. J. Cereb. Blood Flow Metab. 2002; 22 (1): 89–96.
37. Simao F., Porto J. A., Nunes M. L. Effects of enriched environment in spatial learning and memory of immature rats submitted to early undernourish and seizures. Int. J. Dev. Neurosci. 2012; 30 (5): 363–367.
38. Tang A. C., Reeb B. C., Romeo R. D., McEwen B. S. Modification of social memory, hypothalamic-pituitary-adrenal axis, and brain asymmetry by neonatal novelty exposure. J. Neurosci. 2003; 23 (23): 8254–8260.
39. Yang J., Hou C., Ma N. et al. Enriched environment treatment restores impaired hippocampal synaptic plasticity and cognitive deficits induced by prenatal chronic stress. Neurobiol. Learn Mem. 2007; 87 (2): 257–263.
40. Mittaud P., Labourdette G., Zingg H. et al. Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-beta and membrane components. Glia. 2002; 37 (2): 169–177.
41. Garrido P. Aging and stress: past hypotheses, present approaches and perspectives. Aging Dis. 2011; 2 (1): 80–99.
42. Slattery D. A., Neumann I. D. No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J. Physiol. 2008; 586 (2): 377–385.
43. Murgatroyd C. A., Nephew B. C. Effects of early life social stress on maternal behavior and neuroendocrinology. Psychoneuroendocrinology. 2012; [Epub ahead of print].
44. Leussis M. P., Freund N., Brenhouse H. C. et al. Depressive-like behavior in adolescents after maternal separation: sex differences, controllability and GABA. Dev. Neurosci. 2012; [Epub ahead of print].
45. Korosi A., Naninck E. F., Oomen C. A. et al. Early-life stress mediated modulation of adult neurogenesis and behavior. Behav. Brain Res. 2012; 227 (2): 400–409.
46. Veenema A. H. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front. Neuroendocrinol. 2009; 30 (4): 497–518.
47. Wei L., David A., Duman R. S. et al. Early life stress increases anxiety-like behavior in Balbc mice despite a compensatory increase in levels of postnatal maternal care. Horm. Behav. 2010; 57 (4–5): 396–404.
48. Bale T. L., Baram T. Z., Brown A. S. et al. Early life programming and neurodevelopmental disorders. Biol. Psychiatry. 2010; 68 (4): 314–319.
49. Wei L., Simen A., Mane S., Kaffman A. Early life stress inhibits expression of a novel innate immune pathway in the developing hippocampus. Neuropsychopharmacology. 2012; 37 (2): 567–580.
50. Romero-Granados R., Fontan-Lozano A., Aguilar-Montilla F. J. et al. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome. PLoS One. 2011; 6 (12): 1–10.
51. Tsuda M. C., Ogawa S. Long-lasting consequences of neonatal maternal separation on social behaviors in ovariectomized female mice. PLoS One. 2012; 7 (3): 33028.
52. Brunton P. J., Russell J. A. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011; 35 (5): 1178–1191.
53. Bouret S. G. Early life origins of obesity: role of hypothalamic programming. J. Pediatr. Gastroenterol. Nutr. 2009; 48 (Suppl. 1): 31–38.
54. Schroeder M., Moran T. H., Weller A. Attenuation of obesity by early-life food restriction in genetically hyperphagic male OLETF rats: peripheral mechanisms. Horm. Behav. 2010; 57 (4–5): 455–462.
55. Barros V. G., Rodriguez P., Martijena I. D. et al. Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse. 2006; 60 (8): 609–618.
56. Bale T. L. Sex differences in prenatal epigenetic programming of stress pathways. Stress. 2011; 14 (4): 348–356.
57. Li M., Wang M., Ding S. et al. Environmental enrichment during gestation improves behavior consequences and synaptic plasticity in hippocampus of prenatal-stressed offspring rats. Acta. Histochem. Cytochem. 2012; 45 (3): 157–166.
58. Zhang Z., Zhang H., Du B., Chen Z. Neonatal handling and environmental enrichment increase the expression of GAP-43 in the hippocampus and promote cognitive abilities in prenatally stressed rat offspring. Neurosci. Lett. 2012; 522 (1): 1–5.
59. Anderson V., Spencer-Smith M., Wood A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain. 2011; 134 (8): 2197–2221.
60. Hayashi-Kurahashi N., Kidokoro H., Kubota T. et al. EEG for predicting early neurodevelopment in preterm infants: an observational cohort study. Pediatrics. 2012; [Epub ahead of print].
Рецензия
Для цитирования:
Салмина А.Б., Комлева Ю.К., Кувачева Н.В., Лопатина О.Л., Инжутова А.И., Черепанов С.М., Яузина Н.А., Морозова Г.А., Малиновская Н.А., Пожиленкова Е.А., Моргун А.В., Таранушенко Т.Е., Петрова М.М. МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ НАРУШЕНИЯ РАЗВИТИЯ МОЗГА В ПРЕ- И НЕОНАТАЛЬНОМ ПЕРИОДЕ. Вопросы современной педиатрии. 2012;11(6):15-20. https://doi.org/10.15690/vsp.v11i6.487
For citation:
Salmina A.B., Komleva Yu.K., Kuvacheva N.V., Lopatina O.L., Inzhutova A.I., Cherepanov S.M., Yauzina N.A., Morozova G.A., Malinovskaya N.A., Pozhilenkova E.A., Morgun A.V., Taranushenko T.E., Petrova M.M. MOLECULAR MECHANISMS OF NEURODEVELOPMENTAL ALTERATIONS IN PRENATAL AND NEONATAL PERIODS. Current Pediatrics. 2012;11(6):15-20. (In Russ.) https://doi.org/10.15690/vsp.v11i6.487