Proteins in Complementary Food: What Is the Healthiest Level?
https://doi.org/10.15690/vsp.v14i3.1375
Abstract
Adequate protein consumption in infants is a heavily debated issue. First, it is related to the formation of a new scientific field — “Infant prerequisites of man’s wellness and illness,” which directly indicates that excessive intake of proteins during infancy has long-term consequences and greatly contributes to obesity and chronic infectious diseases in adults; second, it is related to new technologies, which improve the protein component of infant formulas and bring them at par with breast milk in terms of quality and quantity. High protein consumption is related to bottle feeding, because starter and further infant formulas are richer in protein than breast milk. Protein-rich menus trigger production of insulinogenic amino acids, insulin and the insulin-like growth factor (IGF-1). High IFTcombined with branched-chain amino acids (leucine, valine, isoleucine, threonine) activates a set of signalling molecules (mTOR), which are responsible for integrating metabolic and immune response. Repeated activation of mTOR coupled with regular intake of high-protein infant formulas causes health issues in adulthood. Diseases like diabetes type 2, obesity, arterial hypertension, cancer (particularly prostatic cancer), are related to overactivation of the mTOR signalling molecule complex. Intensive consumption of milk in today’s world is the key mTOR activator contributing to an increased risk of lifestyle diseases and triggering the mechanism of their development. The progressing infant formula industry allows to cut protein levels in starter and further infant formulas down to 12 g/l and, respectively, lower the risk of non-infectious diseases in adulthood.
About the Authors
О. K. NetrebenkoRussian Federation
М. I. Dubrovskaya
Russian Federation
References
1. Raiha N., Fazzolari Nesci A., Cajozzo C., Puccio G., Minoli I., Mom G. E., Monestier A., Haschke-Becher E., Carrie A.-L. Protein Quantity and Quality in Infant Formula: Closer to the Reference Ill NNW series. Nestle Nutr. Workshop Ser. Pediatr. Program. Karger AG, Basel. 2002; 47: 111–121.
2. Hornell A., Lagstrom H., Lande B., Thorsdottir I. Protein intake from 0–18 years of age and its relation to health: a systematic literature review for the 5th Nordic nutrition recommendations. Food & Nutr. Res. 2013; 57: 21083–22000.
3. Rolland-Cachera M. F., Deheeger M., Akrout M., Bellisle F. Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. Int. J. Obes. Relat. Metab. Disord. 1995; 19 (8): 573–578.
4. Dewey K.G., Beaton G., Fjeld C., Lonnerdal B., Reeds P. et al. Protein requirements of infant and children. Eur. J. Clin. Nutr. 1996; 50 (Suppl. 1): 119–150.
5. Pani P., Carletti C., Knowles A., Parpinel M., Concina F., Montico M., Cattaneo A. Pattern of nutrient intake at six months in the northeast of Italy: a cohort study. BMC Pediatrics. 2014; 14: 127–135.
6. Skilton M. R., Marks G. B., Ayer J. G., Garden F. L., Garnett S. P., Harmer J. A., Leeder S. R., Toelle B. G., Webb K., Baur L. A., Celermajer D. S. Weight gain in infancy and vascular risk factors in later childhood. Pediatrics. 2013; 131: 1821–1828.
7. Ekelund U., Ong K. K., Linne Y., Neovius M., Brage S., Dunger D. B., WarehamN.J., RossnerS. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J. Clin. Endocrinol. Metab. 2007; 92: 98–103.
8. Demerath E. W., Reed D., Choh A. C., Soloway L., Lee M., Czerwinski S. A., Chumlea W. C., Siervogel R. M., Towne B. Rapid postnatal weight gain and visceral adiposity in adulthood: the Fels longitudinal study. Obesity. 2009; 17 (11): 2060–2066.
9. Koletzko B., von Kries R., Closa R., Escribano J., Scaglioni S., Giovannini M., Beyer J., Demmelmair H., Gruszfeld D., Dobrzanska A., Sengier A., Langhendries J. P., Rolland Cachera M. F., Grote V. Lower protein in infant formula is associated with lower weight up to age 2 years: a randomized clinical trial. AJCN. 2009; 89: 1836–1845.
10. Andersen L. G., Hoist C., Michaelsen K., Baker J. L., Sorensen T. Weight and weight gain during early infancy predict childhood obesity: a case-cohort study. Int. J. Obes. 2012; 36: 1306–1311.
11. Leunissen R., Kerkhof G., Hokken-Koelega A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA. 2009; 301 (21): 2234–2242.
12. Wells J. Adaptive variability in the duration of critical windows of plasticity. Evol. Med. Public Health. 2014; 5: 109–121.
13. Burdge G., Lillycrop K., Jackson A. Nutrition in early life and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? Brit. J. Nutr. 2009; 10 (5): 619–630.
14. Correa L. L., Vieira L. N., Lima G. A., Gabrich R., Miranda L. C., Gadelha M. R. Insulin-like growth factor (IgF)-I, IgF binding protein-3, and prostate cancer: correlation with gleason score. Int. Braz. J. Urol. 2015; 41 (1): 110–115.
15. Roith D. L. The Insulin-like growth factor system. Exp. Diabesity Res. 2003; 4: 205–212.
16. Lamkjaer A., Mlgaard C., Mickaelsen K. Early nutrition impact on the insulin-like growth factor axis and later health consequences. Curr. Opin. Nutr. Metabol. Care. 2012; 15: 285–292.
17. Smith P. J., Wise L. S., Berkowitz R., Insulin-like growth factor-1 is an essential regulator of the differentiation of 3Tr-L1 adipocyte. J. Biol. Chem. 1988; 263: 9402–9408.
18. Melnik B., John S. N., Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTOR signaling for postnatal growth. J. Nutr. 2013;12: 103–113.
19. Melnik B. Excessive leucine-mTOR-signalling of cow’s milkbased infant formula: the missing link to understand early childhood obesity. J. Obes. 2012; Article ID 197653: 14.
20. Gobbold S. P. The mTOR pathways and integrating immune regulation. Immunology. 2013; 140: 391–398.
21. Zoncu R., Sabatini D., Efeyan A. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011; 12 (1): 21–35.
22. Hoppe C., Udam R., Lauritzen L., Molgaard C., Juul A., Michaelsen K. Animal protein intake, serum insulin-leike growth factor 1 and growth in healthy 2.5 y-old Danish children. AJCN. 2004; 80: 447–452.
23. Tang M., Krebs N. High protein intake from meat as complimentary food increases growth but not adiposity in breast-fed infants: a randomized trial. AJCN. 2014; 100: 1322–1328.
24. Ong K., Kratzsch J., Kiess W., Dunger D. ALSPAC Study Team. Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. J. Clin. Endocrinol. Metab. 2002; 87 (3): 1041–1044.
25. Ziegler E. Growth of breast-fed and formula-fed infants. In: Protein and energy requirements in infancy and childhood. Nestle Nutr. Workshop Ser. Karger AG, Basel. 2006. P. 51–63.
26. Brahmkhatri V. P., Prasanna C., Atreya H. C. Insulin-like growth factor system in cancer: novel targeted therapies. Biomed. Res. 2015; Article ID 538019: 24.
27. Closa-Monasterolo R., Ferre N., Luque V., Zaragoza-Jordana M., Grote V., Weber M., Koletzko B., Socha P., Gruszfeld D. Sex differences in the endocrine system in response to protein intake early in life. AJCN. 2011; 94 (Suppl.): 1920–1927.
28. Lonnerdal B., Woodhouse L. R., Glazier C. Compartimentalization and quantitation of protein in human milk. J. Nutr. 1987; 117 (8): 1385–1395.
29. Steinberg L. A., O’Konnell N. C., Hatch T. F., Picciano M., Birch L. Triptophan intake influences infants sleep latency. J. Nutr. 1992; 122 (9): 1781–1791.
30. Нетребенко О. К. Влияние различных видов вскармливания на аминокислотный, липидный обмен и антиоксидантный статус у недоношенных детей. Автореф. дис. ... канд. мед. наук. М. 1988. 25 c.
31. Mace K., Steenhout P., Klassen P., Donnet A. Protein quality and quantity in cow’s milk-based formula for healthy term infants: past, present and future. Nestle Nutr. Workshop Ser. Pediatr. Program. Karger AG, Basel. 2006; 58: 189–203; discussion 203–205.
Review
For citations:
Netrebenko О.K., Dubrovskaya М.I. Proteins in Complementary Food: What Is the Healthiest Level? Current Pediatrics. 2015;14(3):387-391. (In Russ.) https://doi.org/10.15690/vsp.v14i3.1375