Preview

Вопросы современной педиатрии

Расширенный поиск

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ВЛИЯНИИ ДЛИННОЦЕПОЧЕЧНЫХ ПОЛИНЕНАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ НА РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ У ДЕТЕЙ

https://doi.org/10.15690/vsp.v14i1.1263

Полный текст:

Аннотация

В статье изложены современные взгляды на роль длинноцепочечных полиненасыщенных кислот (ДЦПНЖК) в развитии и функционировании нервной системы ребенка. Несмотря на то, что ДЦПНЖК необходимы человеку в небольших количествах по сравнению с другими питательными веществами, обеспеченность эссенциальными жирными кислотами на ранних этапах развития ребенка имеет критическое значение не только в детстве, но и в долгосрочной перспективе. Изучение многочисленных функций ДЦПНЖК привело к тому, что достаточное их потребление с пищей в последнее время рассматривается как один из важнейших факторов, определяющих здоровье ребенка и значительно влияющих на созревание, развитие и функционирование нервной системы и органа зрения. Обеспеченность организма активными ДЦПНЖК зависит не только от поступления их предшественников или непосредственно самих кислот с пищей, но и от активности эндогенных десатураз, что обусловлено генетически. Обсуждаются основные факторы, влияющие на обеспеченность ребенка ДЦПНЖК, начиная с внутриутробного периода развития, постнатального периода, раннего детства и в старшем возрасте, а также состояния, связанные с их дефицитом.

 

Об авторах

С. Г. Макарова
Научный центр здоровья детей, Москва, Российская Федерация Первый Московский государственный медицинский университет им. И.М. Сеченова, Российская Федерация
Россия
доктор медицинских наук, врач-диетолог, главный научный сотрудник отдела клинических исследований в педиатрии НЦЗД, профессор кафедры аллергологии и клинической иммунологии педиатрического факультета Первого МГМУ им. И.М. Сеченова


Е. А. Вишнёва
Научный центр здоровья детей, Москва, Российская Федерация
Россия


Список литературы

1. Second International Conference on Nutrition Rome, 19–21 November 2014 Conference Outcome Document: Rome Declaration on Nutrition ICN2 2014/2. http://www.fao.org/3/a-ml542e (available: 28.12.2014).

2. Shilina N.M., Kon' I.Ya. Sovremennye predstavleniya o fiziologicheskikh i metabolicheskikh funktsiyakh polinenasyshchennykh zhirnykh kislot [Modern Views on the Physiological and Metabolic Functions of Polyunsaturated Fatty Acids]. Voprosy detskoi dietologii = Problems of Pediatric Nutritiology. 2004; 2(6): 25–30.

3. Levachev M.M. Znachenie zhira v pitanii zdorovogo i bol'nogo cheloveka: Spravochnik po dietologii [Significance of Fat in the Diet of Healthy and Sick People: Guide to Dietology]. Edited by Tutel’yan V.A., Samsonov M.A. Мoscow, Meditsina. 2002. p. 25–32.

4. Simopoulos A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991; 54: 438–463.

5. Harris W.S., von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev. Med. 2004; 39: 212–220.

6. Hamilton J., Greiner R., Salem N., Jr., Kim H.-Y. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids. 2000; 35: 863–869.

7. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper 91. FAO, Rome. 2010. 198 p.

8. Muskiet F.A.J. Frontiers in Neuroscience. Chapter 2. Pathophysiology and Evolutionary Aspects of Dietary Fats and Long-Chain Polyunsaturated Fatty Acids across the Life Cycle. Fat Detection: Taste, Texture, and Post Ingestive Effects. Boca Raton (FL): CRC Press. 2010. 214 p.

9. Tutel'yan V.A., Spirichev V.B., Shatnyuk L.N. Korrektsiya mikronutrientnogo defitsita — vazhneyshiy aspekt kontseptsii zdorovogo pitaniya naseleniya Rossii [Correction of Micronutrient Deficiency – Most Important Aspect for the Concept of Healthy Nutrition of the Russian Population]. Voprosy pitaniya = Problems of Nutrition. 1999; 1: 3–9.

10. Tutel'yan V.A., Spirichev V.B. Mikronutrienty v pitanii zdorovogo i bol'nogo cheloveka (spravochnoe rukovodstvo po vitaminam i mineral'nym veshchestvam) [Micronutrients in the Diet of Healthy and Sick People (Informative Guide to Vitamins and Minerals)]. Мoscow, 2002. 423 p.

11. Belyaev Ye.N., Chiburaev V.I., Ivanov A.A. Kharakteristika fakticheskogo pitaniya i zdorov'ya detey v regionakh Rossiyskoy Federatsii [Characteristics of Actual Nutrition and Health of Children in the Regions of the Russian Federation]. Voprosy pitaniya = Problems of Nutrition. 2000; 6: 3–7.

12. Pot G.K., Prynne C.J., Roberts C., Olson A., Nicholson S.K., Whitton C., Teucher B., Bates B., Henderson H., Pigott S., Swan G., Stephen A.M. National Diet and Nutrition Survey: fat and fatty acid intakes from the first year of the rolling programme and comparison with previous surveys. Brit. J Nutr. 2012; 107 (3): 405–415.

13. Garneau V., Rudkovska I., Paradis A.M., Godin G., Julien P., Pérusse L., Vohl M.C. Omega-3 fatty acids status in human subjects estimated using a food frequency questionnaire and plasma phospholipids levels. Nutr. J. 2012; 11: 46.

14. Min Y., Blois A., Geppert J., Khalil F., Ghebremeskel K., Holmsen H. Dietary fat intake, circulating and membrane fatty acid composition of healthy Norwegian men and women. J. Hum. Nutr. Diet. 2013. DOI: 10.1111/jhn.12105 [Epub ahead of print].

15. Bjerraggrd P., Mulvad G. The best of two worlds: how the Greenland Board of Nutrition has handled conflicting evidence about diet and health. Int. J. Circumpolar Health. 2012; 71: 18588.

16. Lattka E., Klopp N., Demmelmair H., Klingler M., Heinrich J, Koletzko B. Genetic variations in polyunsaturated fatty acid metabolism — implications for child health. Ann. Nutr. Metab. 2012, 60 (Suppl. 3): 8–13.

17. Innis S.M. Omega-3 fatty acid biochemistry: perspectives from human nutrition. Mil. Med. 2014; 179 (11; Suppl.): 82–87.

18. Schaeffer L., Gohlke H., Muller M., Hei M., Palmer L., Kompauer L., Demmelmair H., Illig T., Koletzko B., Heinrich J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 2006; 15: 1745–1756.

19. Brookes K.J., Chen W., Xu X., Taylor E., Asherson P. Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorders. Biol. Psychiatry. 2006; 60: 1053–1061.

20. Van de Rest O., van Hoolijdonk L.W., Doets E.E., Schiepers OJ, Eilander A, de Groot L.C. B vitamins and n-3 fatty acids for brain development and function: review of human studies. Ann. Nutr. Metab. 2012; 60 (4): 272–292.

21. Russel F.D, Burgin-Maunder C.S. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar. Drugs. 2012; 10 (11): 2535–2559.

22. Oh S.F., Vickery T. W., Serhan Ch.N. Chiral Lipidomics of E-Series Resolvins: Aspirin and the Biosynthesis of Novel Mediators. Biochem. Biophys. 2011; 1811 (11): 737–747.

23. Lehninger A. Osnovy biokhimii: v 3 t. [Principles of Biochemistry: in 3 v.] V. 1. Мoscow, Mir, 1985. p. 325–351.

24. Uauy R., Birch E., Birch D. Peirano P. Visual and brain function measurements in studies of n-3 fatty acid requirements of infant. J. Pediatr. 1992; 120: 168–180.

25. Hamilton J., Greiner R., Salem N., Jr., Kim H.-Y. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids. 2000; 35: 863–869.

26. Salem N., Jr., Litman B., Kim H.-Y., Gawrisch K. Mechanisms of action of docosahexaenoic acid. Lipids. 2001; 36: 945–959.

27. Bourre J.-M., Dumont O. The administration of pig brain phospholipids versus soybean phospholipids in the diet during the period of brain development in the rat results in greater increments of brain docosahexaenoic acid. Neurosci. Lett. 2002; 335: 129–133.

28. Wurtman R.J., Cansev M., Sakamoto T. Ulus I.H. Use of phosphatide precursors to promote synaptogenesis. Ann. Rev. Nutr. 2009; 29: 59–87.

29. Farquharson J., Cockburn F., Patrick W.A. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet. 1992; 340: 810–813.

30. Wurtman R.J. A Nutrient Combination that Can Affect Synapse Formation. Nutrients. 2014; 6: 1701–1710.

31. Clandinin M.T., Chapell J.E., Van Aerde J.E.E. Requirements of newborn infants for long chain polyunsaturated fatty acids. Acta. Paediatr. Scand. 1989; 351: 63–71.

32. Makrides M., Neumann M.A., Byrad R. W. et al. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am. J. Clin. Nutr. 1994; 60: 189–194.

33. Crawford M.A. Placental delivery of arachidonic and docosagexaenoic acids: implication for the lipid nutrition of preterm infants. Am. J. Clin. Nutr. 2000; 71 (1; Suppl.): 275–284.

34. Rump P., Merisink R.P., Kester A.D.M., Hornstra G. Essential fatty acids composition of plasma phospholipids and birth weight: a study in term neonates. Am. J. Clin. Nutr. 2001; 73: 797–806.

35. Moon R.J, Harvey N.C, Robinson S.M., Ntani G., Davies J.H., Inskip H.M., Godfrey K.M., Dennison E.M., Calder P.C., Cooper C.; SWS Study Group. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J. Clin. Endocrin. Metab. 2013; 98 (1): 299–307.

36. Innis S.M. Essential fatty acids in growth and development. Prog. Lipid. Res. 1986; 30: 39–103.

37. Uauy R., Treen M., Hoffman D. Essential fatty acid metabolism and requirements during development. Semin. Рerinatol. 1989; 13: 118–130.

38. Lattka E., Koletzko B., Zellinger S. et al. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Brit. J. Nutr. 2013, 109 (7): 1196–1210.

39. Duttaroy A.K. Transport of fatty acids across the human placenta: a review. Prog. Lipid. Res. 2009; 48 (1): 52–61.

40. Asim K., Dutta-Roy. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am. J. Clin.Nutr. 2000; 71: 315–322.

41. Hibbeln J.R. Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J. Affect. Disord. 2002; 69 (1–3): 15–29.

42. Oken E., Kleinman K.P., Olsen S.F., Rich-Edwards J.W., Gillman M.W. Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: results from a US pregnancy cohort. Am. J. Epidemiol. 2004; 160 (8): 774–783.

43. Woods J., Ward G., Salem N., Jr. Is docosahexaenoic acid necessary in infant formula? Evaluation of high linolenate diets in the neonatal rat. Pediatr. Res. 1996; 40 (5): 687–694.

44. Kon' I.Ya, Shilina N.M., Vol'fson S.B., Georgieva O.V. Ispol'zovanie polinenasyshchennykh zhirnykh kislot v pitanii zdorovykh detey [Use of Polyunsaturated Fatty Acids in the Diet of Healthy Children]. Lechashhij vrach - Practicing Doctor. 2006; 1. http://www.lvrach.ru/2006/01/4533314/ (accessed: Dec 28, 2014).

45. Minda H., Kovacs A., Funke S., Szasz M., Burus I., Molnar S., Marosvolgyi T., Decsi T. Changes of fatty acid composition of human milk during the first month of lactation: a day-to-day approach in the first week. Ann. Nutr. Metab. 2004; 48 (3): 202–209.

46. Malcolm C.A., McCulloch D.L., Montgomery C., Shepherd A., Weaver I.T. Maternal docosa-hexaenoic acid supplementation during pregnancy and visual evoked potential development in term infants: a double blind, prospective, randomised trial. Arch. Dis. Child. Fetal. Neonatal. Ed. 2003; 88: 383–390.

47. Helland I.B., Smith L., Saarem K., Saugstad O.D., Drevon C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics. 2003; l (II): 39–44.

48. Koletzko B., Lien E., Agostoni C., Bohles H., Campoy C., Cetin I., Decsi T., Dudenhausen J.W., Dupont C., Forsyth S. et al. The roles of pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. Perinat. Med. 2008; 36: 5–14.

49. Caspi A., Williams B., Kim-Cohen J., Craig I.W., Milne B.J., Poulton R., Schalkwyk L.C., Taylor A., Werts H., Moffitt T. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc. Natl. Acad. Sci. USA. 2007; 104: 18860–18865.

50. Morales E., Bustamante M., Gonzalez J.R., Guxens M., Torrent M., Mendez M., Garcia-Esteban R., Julvez J., Forns I., Vrijheid M., Molto-Puigmarti C., Lopez-Sabater C., Estivill X., Sunyer J. Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS One. 2011; 6: l7I81.

51. Kovács A., Funke S., Marosvölgyi T., Burus I., Decsi T. Fatty acids in early human milk after preterm and full-term delivery. J. Pediatr. Gastroenterol. Nutr. 2005; 41 (4): 454–459.

52. Carnielli V.P., Wattimena D.J.L., Luijendijk I.H.T., Boerlage A., Degenhart H.J., Sauer P.J. The very low birth weight infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr. Res. 1996; 40: 169–174.

53. Makrides M., Neumann M.A., Simmer K., Pater J., Gibson R. Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet. 1995; 345: 1463–1468.

54. Birch E.E., Hoffman D.R., Uauy R., Birch D.G., Prestidge C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr. Res. 1998; 44: 201–209.

55. Birch E.E., Garfield S., Hoffman D.R., Uauy R., Birch D.G. A randomised controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev. Ved. Child. Neurol. 2000; 42: 174–181.

56. Hoffman D.R., Birch E.E., Birch D.G. Uauy R., Castañeda Y.S., Lapus M.G., Wheaton D.H. Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development. J. Pediatr. Gastroenterol. Nutr. 2000; 31: 540–553.

57. Carlson S.E., Ford A.J., Werkman S.H., Peeples J.M., Koo W.W. Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin. Pediatr. Res. 1996; 39: 882–888.

58. Agostoni C., Trojan S., Bellu R., Riva E., Giovannini M. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: The role of long-chain polyunsaturated fatty acids. Pediatr. Res. 1995; 38: 262–266.

59. Willatts P., Forsyth J.S., Dimodugno M.K., Varma S., Colvin M. Effect of long-chain polyunsaturated fatty acids infant formula on problem solving at 10 months of age. Lancet. 1998; 352: 688–691.

60. EU Commission Directive 96/4/EC of February 1996 amending Directive 91/321/EEC on infant formulae and follow-on formulae. Brussels. 1996.

61. EU Commission Directive 2006/141/EC of December 2006 on infant formulae and follow-on formulae. 2006.

62. Koletzko B., Agostoni C., Carlson S., Clandinin T., Hornstra G., Neuringer M., Uauy R., Yamashiro Y., Willatts P. Long chain polyunsaturated fatty acid (LC-PUFA) and perinatal development. Acta Paediatr. 2001; 90 (4): 460–464.

63. Lapillone A., Gron-Wargo S., Gonzales C.H., Uauy R. Lipid needs of preterm infants: updated recommendations. J. Pediatr. 2013; 162 (3; Suppl.): 37–47.

64. Surzhik A.V. Effektivnost' vskarmlivaniya detey grudnogo vozrasta adaptirovannymi molochnymi smesyami, obogashchennymi dlinnotsepochechnymi polinenasyshchennymi zhirnymi kislotami. Avtoref. dis. … kand. med.nauk [Effectiveness of Infant Feeding with Adapted Milk Formula Enriched with Long-Chain Polyunsaturated Fatty Acids. Author's abstract]. Мoscow, 2004. 28 p.

65. Makarova S.G., Vishneva Ye.A. Dlinnotsepochechnye polinasyshchennye zhirnye kisloty klassov ω-3 i ω-6 kak essentsial'nyy nutrient v raznye periody detstva [Long-Chain Polyunsaturated Fatty Acids ω-3 and ω-6 as an Essential Nutrient in Different Periods of Childhood]. Pediatricheskaja farmakologija = Pediatric pharmacology. 2013; 10 (4): 80–88.

66. Dotterud C.K., Storro O., Simpson M.R., Johnsen R., Øien T. The impact of pre- and postnatal exposures on allergy related diseases in childhood: a controlled multicentre intervention study in primary health care. BMC Public Health. 2013; 13: 123. DOI: 10.1186/1471-2458-13-123.

67. 10. Diagnostika i lechenie allergii k belkam korov'yego moloka u detey grudnogo i rannego vozrasta: prakticheskie rekomendatsii [Diagnosis and Treatment of Allergy to Cow's Milk Proteins in Infants and Young Children: Practical Advice]. Edited by Baranov А.А., Namazova-Baranova L.S., Borovik T.E., Makarova S.G. М.: Pediatr. 2014. 48 p.

68. Sinn N., Milte C., Howe Peter R.C. Oiling the Brain: A Review of Randomized Controlled Trials of Omega-3 Fatty Acids in Psychopathology across the Lifespan. Nutrients. 2010; 2 (2): 128–170.

69. Burgess J.R., Stevens L.J., Zhang W., Peck L. Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 2000; 71: 327–330.

70. Chen J.-R., Hsu S.-F., Hsu C.-D., Hwang L.-H., Yang S.-C. Dietary patterns and blood fatty acid composition in children with attention-deficit hyperactivity disorder in Taiwan. J. Nutr. Biochem. 2004; 15: 467–472.

71. Stevens L.J., Zhang W., Peck L., Kuczek T., Grevstad N., Mahon A.K., Zentall S.S., Arnold L.E., Burgess J.R. EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids. 2003; 38: 1007–1021.

72. Johnson M., Östlund S., Fransson G., Kadesjö B., Gillberg C. Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder. J. Atten. Disord. 2008; 12: 394–401.

73. Sinn N., Bryan J., Wilson C. Cognitive effects of polyunsaturated fatty acids in children with attention deficit hyperactivity disorder symptoms: A randomised controlled trial. Prostaglandins Leukot. Essent. Fatty Acids. 2008; 78: 311–326.

74. Kon' I.Ya., Shilina N.M., Korosteleva M.M., Budantseva S.V. Issledovanie vliyaniya ryb'yego zhira kak istochnika 3 polinenasyshchennykh zhirnykh kislot na kognitivnye funktsii shkol'nikov 5–6 let [Investigation of the Effect of Fish Oil as a Source of 3 Polyunsaturated Fatty Acids on Cognitive Functions of 5-6 Year Old School Children]. Pediatrija = Pediatrics. Consilium medicum. 2009;87(1):84–88.

75. Montgomery P., Burton J.R., Sewell R.P. et al. Low Blood Long Chain Omega-3 Fatty Acids in UK Children Are Associated with Poor Cognitive Performance and Behavior: A Cross-Sectional Analysis from the DOLAB Study. PloS One. 2013;8(6):66697. DOI: 10.1371/journal.pone.0066697.

76. Richardson A.J., Puri B.K. A randomised double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2002;26:233–239.

77. Richardson A.J., Montgomery P. The Oxford-Durham study: a randomised, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics. 2005;115:1360–1366.

78. Sinn N., Bryan J. Effect of supplementation with polyunsaturated fatty acids and micronutrients on ADHD-related problems with attention and behavior. J. Dev. Behav. Pediatr. 2007;28:82–91.


Для цитирования:


Макарова С.Г., Вишнёва Е.А. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ВЛИЯНИИ ДЛИННОЦЕПОЧЕЧНЫХ ПОЛИНЕНАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ НА РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ У ДЕТЕЙ. Вопросы современной педиатрии. 2015;14(1):55-63. https://doi.org/10.15690/vsp.v14i1.1263

For citation:


Makarova S.G., Vishneva E.A. MODERN VIEWS ON THE IMPACT OF LONG-CHAIN POLYUNSATURATED FATTY ACIDS ON THE DEVELOPMENT OF THE CHILD’S NERVOUS SYSTEM. Current Pediatrics. 2015;14(1):55-63. (In Russ.) https://doi.org/10.15690/vsp.v14i1.1263

Просмотров: 415


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)