Preview

Вопросы современной педиатрии

Расширенный поиск

Грудное молоко: возможные механизмы формирования поведения и когнитивных функций ребенка

https://doi.org/10.15690/vsp.v17i5.1956

Полный текст:

Аннотация

В статье  обсуждается  возможная  связь между  олигосахаридами  грудного  молока,  составом кишечной микробиоты грудного  ребенка  и формированием  его поведения.  Приведены  данные научных исследований,  выполненных как на модели лабораторных  животных,  так и среди детей, посвященных изучению влияния кишечной микробиоты на формирование особенностей поведения и когнитивных функций.

Об авторах

С. Е. Украинцев
ООО «Нестле Россия»
Россия

Украинцев Сергей Евгеньевич - медицинский директор ООО «Нестле Россия».

115054, Москва, Павелецкая пл., д. 2, стр. 1; тел.: +7 (495) 725-70-00



Н. С. Парамонова
Гродненский государственный медицинский университет
Беларусь


И. А. Малёванная
Могилевская детская областная больница
Беларусь


Список литературы

1. Нетребенко О.К. Кишечная микробиота и мозг: обоюдное влияние и взаимодействие // Педиатрия. Журнал им. Г.Н. Сперанского. — 2015. — Т. 94. — № 6 — С. 134–140.

2. Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011; 60(3):307–317. doi: 10.1136/gut.2009.202515.

3. Bercik P, Denou E, Collins J, et al. The intestinal microbiota effect central levels of brain-derived neurotrophic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609. doi: 10.1053/j.gastro.2011.04.052.

4. Carlson AL, Xia K, Azcarate-Peril MA, et al. Infant gut microbiome associated with cognitive development. Biol Psychiatry. 2018;83(2):148–159. doi: 10.1016/j.biopsych.2017.06.021.

5. Mullen scales of early learning: AGS Edition [Internet]. Circle Pines, MN, USA: American Guidance Services; 1995 [cited 2018 Sep 12]. Available from: https://www.ecasd.k12.wi.us/student_services/assessments/MSEL-AGS.pdf.

6. Christian LM, Galley JD, Hade EM, et al. Gut microbiome composition is associated with temperament during early childhood. Brain Behav Immun. 2015;45:118–127. doi: 10.1016/j.bbi.2014.10.018.

7. Mulle JG, Sharp WG, Cubells JF. The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep. 2013;15(2):337. doi: 10.1007/s11920-012-0337-0.

8. Glasson EJ, Bower C, Petterson B, et al. Perinatal factors and the development of autism: a population study. Arch Gen Psychiatry. 2004;61(6):618–627. doi: 10.1001/archpsyc.61.6.618.

9. Kang DW, Park JG, Ilhan ZE, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8(7):e68322. doi: 10.1371/journal.pone.0068322.

10. Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108 Suppl 3:511–533. doi: 10.1289/ehp.00108s3511.

11. Hennet T, Borsig L. Breastfed at Tiffany’s. Trends Biochem Sci. 2016;41(6):508–518. doi: 10.1016/j.tibs.2016.02.008.

12. Swallow DМ. Genetics of lactase persistence and lactose intolerance. Ann Rev Genet. 2003;37:197–219. doi: 10.1146/annurev.genet.37.110801.143820.

13. Макарова Е.Г., Нетребенко О.К., Украинцев С.Е. Олигосахариды грудного молока: история открытия, структура и защитные функции // Педиатрия. Журнал им. Г.Н. Сперанского. — 2018. — Т. 97. — № 4 — С. 152–160. doi: 10.24110/0031-403x-2018-97-4-152-160.

14. Sela DA. Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol. 2011;149(1):58–64. doi: 10.1016/j.ijfoodmicro.2011.01.025.

15. Hetherington MМ. Understanding infant eating behavior — Lessons learned from observation. Physiol Behav. 2017;176: 117–124. doi: 10.1016/j.physbeh.2017.01.022.

16. Eisenhofer G, Aneman A, Friberg P, et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997;82(11):3864–3871. doi: 10.1210/jcem.82.11.4339.

17. Desbonnet L, Garrett L, Clarke G, et al. Effects of theprobiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–1188. doi: 10.1016/j.neuroscience.2010.08.005.

18. Dhakal R, Bajpai VK, Baek KH. Production of gaba ( -aminobutyric acid) by microorganisms: a review. Braz J Microbiol. 2012;43(4): 1230–1241. doi: 10.1590/S1517-83822012000400001.

19. Duca FA, Swartz TD, Sakar Y, Covasa M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS One. 2012;7(6):e39748. doi: 10.1371/journal.pone.0039748.

20. Swartz TD, Duca FA, de Wouters T, et al. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br J Nutr. 2012;107(5):621–630. doi: 10.1017/S0007114511003412.

21. Erny D, Hrabe de Angelis AL, Prinz M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology. 2017;150(1):7–15. doi: 10.1111/imm.12645.

22. Triantis V, Bode L, van Neerven RJ. Immunological effects of human milk oligosaccharides. Front Pediatr. 2018;6:190. doi: 10.3389/fped.2018.00190.

23. Urashima T, Odaka G, Asakuma S, et al. Chemical characterization of oligosaccharides in chimpanzee, bonobo, gorilla, orangutan, and siamang milk or colostrum. Glycobiology. 2009;19(5):499–508. doi: 10.1093/glycob/cwp006.

24. Scott KP, Martin JC, Duncan SH, Flint HJ. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol. 2014;87(1):30–40. doi: 10.1111/1574-6941.12186.

25. Chua MC, Ben-Amor K, Lay C, et al. Effect of synbiotic on the gut microbiota of cesarean delivered infants: a randomized, double-blind, multicenter study. J Pediatr Gastroenterol Nutr. 2017; 65(1):102–106. doi: 10.1097/MPG.0000000000001623.

26. fda . gov [Internet]. GRAS Exemption Claim for 2’-O-Fucosyllactose (2’-FL). GRAS Notice (GRN) No. 650 [cited 2018 Sep 30]. Available from: https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm513832.pdf.

27. fda. gov [Internet]. GRAS Exemption Claim for Lacto-N-neotetraose (LNnT). GRAS Notice (GRN) No. 659 [cited 2018 Sep 30]. Available from: https://www.fda.gov/downloads/food/ingredient-spackaginglabeling/gras/noticeinventory/ucm517673.pdf.

28. Riggs AD. Bacterial Production of Human Insulin. Diabetes Care. 1981;4(1):64–68. doi: 10.2337/diacare.4.1.64.

29. Safety of 2’-O-fucosyllactose as a novel food ingredient pursuant to Regulation (EC) № 258/97. EFSA Journal. 2015;13(7):4184. doi: 10.2903/j.efsa.2015.4184.

30. Xiao L, Leusink-Muis T, Kettelarij N, et al. Human milk oligosaccharide 2'-fucosyllactose improves innate and adaptive immunity in an influenza-specific murine vaccination model. Front Immunol. 2018;9:452. doi: 10.3389/fimmu.2018.00452.

31. Chaturvedi P, Warren CD, Altaye M, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology. 2001;11(5):365–372. doi: 10.1093/glycob/11.5.365.

32. Coppa GV, Pierani P, Zampini L, et al. Oligosaccharidesin human milk during different phases of lactation. Acta Paediatr Suppl. 1999; 88(430):89–94. doi: 10.1080/080352599750029808.

33. Puccio G, Alliet P, Cajozzo C, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624–631. doi: 10.1097/MPG.0000000000001520.

34. Prieto PA. In vitro and clinical experiences with a human milk oligosaccharide, Lacto-N-neotetraose, and fructooligosaccharides. Foods Food Ingredients J Japan. 2005;210:1018–1030.

35. Liao Y, Weber D, Xu W, et al. Absolute quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J Proteome Res. 2017;16(11):4113–4121. doi: 10.1021/acs.jproteome.7b00486.

36. Pannaraj PS, Li F, Cerini C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171(7):647–654. doi: 10.1001/jamapediatrics.2017.0378.


Для цитирования:


Украинцев С.Е., Парамонова Н.С., Малёванная И.А. Грудное молоко: возможные механизмы формирования поведения и когнитивных функций ребенка. Вопросы современной педиатрии. 2018;17(5):394-398. https://doi.org/10.15690/vsp.v17i5.1956

For citation:


Ukraintsev S.E., Paramonova N.S., Malyovannaya I.A. Breast Milk: Possible Mechanisms to Shape the Behaviour and Cognitive Functions of a Child. Current Pediatrics. 2018;17(5):394-398. (In Russ.) https://doi.org/10.15690/vsp.v17i5.1956

Просмотров: 300


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)